References and Links


[1] Rojas, J.C. & Gonzalez-Lima, F. (2013). Neurological and psychological applications of transcranial lasers and LEDs. Biochemical Pharmacology, 86:447-457

[2] Hamblin, M. (2016). Photobiomodulation and the brain: has the light dawned? Biochemical Society. Available at:

[3] Hamilton, C., Hamilton, D., Nicklason, F., Massri, N.E., & Mitrofanis, J. (2018). Exploring the use of transcranial photobiomodulation in Parkinson’s disease patients. Neural Regeneration Research, 13(10): 1738-1740. Available at:

[4] Johnstone, D., Moro, C., Stone, J., Benabid, A-L., & Mitrofanis, J. (2015). Turning On Lights to Stop Neurodegeneration: The Potential of Near Infrared Light Therapy in Alzheimer’s and Parkinson’s Disease. Frontiers in Neuroscience, 9:500. Available at:

[5] Santos L et al., (2019). Photobiomodulation in Parkinson’s disease: A randomized controlled trial, Brain Stimulation, in press, Available at: https://

[6] Chao, L.L. (2019). Effects of Home Photobiomodulation Treatments on Cognitive and Behavioral Function, Cerebral Perfusion, and Resting-State Functional Connectivity in Patients with Dementia: A Pilot Trial. Photobiomodulation, Photomedicine, and Laser Surgery, 37(3):133-141

[7] Saltmarche, A.E., Naeser, M.A., Ho, K.F., Hamblin, M.R. & Lim, L. (2017. Significant Improvement in Cognition in Mild to Moderately Severe Dementia Cases Treated with Transcranial Plus Intranasal Photobiomodulation: Case Series Report. Photomedicine and Laser Surgery, 35(8),

[8] Yang, L., Tucker, D., Dong, Y. et al. (2018). Photobiomodulation therapy promotes neurogenesis by improving post-stroke local microenvironment and stimulating neuroprogenitor cells. Experimental Neurology, 299(A): 86-96, j.expneurol.2017.10.013

[9] Naeser, M., Zafonte, R., Krengel, M.H. et al. (2014). Significant Improvements in Cognitive Performance Post-Transcranial, Red/Near-Infrared Light-Emitting Diode Treatments in Chronic, Mild Traumatic Brain Injury: Open-Protocol Study. Journal of Neurotrauma, 31:1008-1017

[10] Naeser, M. & Hamblin, M.R. (2015). Traumatic Brain Injury: A Major Medical Problem That Could Be Treated Using Transcranial, Red/Near-Infrared LED Photobiomodulation. Photomedicine and Laser Surgery, 33(9):443-446,

[11] Hamblin, M.R. (2017). Photobiomodulation for traumatic brain injury and stroke. Journal of Neuroscience Research, 96(4): 731-743,

[12] Morries, L., Cassano, P. & Henderson, T.A. (2015). Treatments for traumatic brain injury with emphasis on transcranial near-infrared laser phototherapy. Neuropsychiatry Disease Treatment,11: 2159–2175,

[13] Cassano, P., Petrie, S.R., Mischoulon, D., et al. (2018). Transcranial photobiomodulation for the treatment of major depressive disorder. The ELATED-2 Pilot Trial. Photomedicine and Laser Surgery, 36(12), 634-646,

[14] Caldieraro, M.A. & Cassano, P. (2019). Transcranial and systematic photobiomodulation for major depressive disorder: A systematic review of efficacy, tolerability and biological mechanisms. Journal of Affective Disorders, 243,262-273,

[15] Quah-Smith, I., Smith, C., Crawford, J.D., Russell, J., (2013). Laser acupuncture for depression: a randomised double blind controlled trial using low intensity laser intervention. Journal of Affective Disorders, 148, 179–187,

[16] Arany, P.R. (2016) Photobiomodulation Therapy: Communicating with Stem Cells for Regeneration? Photomedicine and Laser Surgery, 24(11),

[17] Rojas, J.C., Bruchey, A.K., & Gonzalez-Lima, F. (2012). Low-level light therapy improves cortical metabolic capacity and memory retention. Journal of Alzheimers Disease, 32:741–752,

[18] Blanco, N.J., Maddox, W.T. & F. Gonzalez-Lima. (2015). Improving executive function using transcranial infrared laser stimulation, Journal of Neuropsychology, 11(1): 14-25,

References coming soon


Tang, J., Herda, A.H., & Kern, T.S. (2014). Photobiomodulation in the treatment of patients with non-center-involving diabetic macular oedema. British Journal of Ophthalmology, 98(8):1463-1463;

Geneva, I.I. (2016). Photobiomodulation for the treatment of retinal diseases: a review. International Journal of Ophthalmology, 9(1):145-152;

Merry, G., Dotson, R., Devenyi, R., Markowitz, S. & Reyes, S. (2012). Photobiomodulation as a New Treatment for Dry Age Related Macular Degeneration. Results from the Toronto and Oak Ridge Photobimodulation Study in AMD (TORPA). Investigative Ophthalmology & Visual Science, 53:2049;

Merry, GF., Munk, MR, Dotson, RS, Walker, MG, & Devenyi, RG. (2016). Photobiomodulation reduces drusen volume and improves visual acuity and contrast sensitivity in dry age‐related macular degeneration. Acta Ophthamalogica, 95(4):e270-277 ;

Natoli, R., Valter, K., Barbosa, M., Dahlstrom, J. et al. (2013). 670nm Photobiomodulation as a Novel Protection against Retinopathy of Prematurity: Evidence from Oxygen Induced Retinopathy Models.  PLoS One, 8(8): e72135;

Eells J.T., DeSmet, K.D. et al. (2008) Photobiomodulation for the Treatment of Retinal Injury and Retinal Degenerative Diseases. In: Waynant R., Tata D.B. (eds) Proceedings of Light-Activated Tissue Regeneration and Therapy Conference. Lecture Notes in Electrical Engineering, vol 12. Springer, Boston, MA;

Zang, J., Liu, R., Kuang, H-Y, Gao, X-Y & Liu, H-L. (2017). Protective treatments and their target retinal ganglion cells in diabetic retinopathy. Brain Research Bulletin, 132:53-60, 10.1016/j.brainresbull.2017.05.007

Cheng, Y., Dum Y., Liu, H et al. (2018). Photobiomodulation Inhibits Long-term Structural and Functional Lesions of Diabetic Retinopathy. Diabetes, 67:291-298,

Sivapathasuntharam, C., Sivaprasad, S., Hogg, C., & Jeffery, G. (2017). Aging retinal function is improved by near infrared light (670 nm) that is associated with corrected mitochondrial decline. Neurobiology of aging, 52, 66–70. doi:10.1016/j.neurobiolaging.2017.01.001

References coming soon!


Ferraresi, C., Huand, Y-Y, & Hamblin, M.R. (2016). Photobiomodulation in human muscle tissue: an advantage in sports performance? Journal of Biophotonics, 9 (11-12), 1273-1299

Hamblin, M.R. (2016). Shining light on the head: Photobiomodulation for brain disorders. BBA Clinical, 6, 113-124; available at:

Rojas, J.C. & Gonzalez-Lima, F. (2011) Low-level light therapy of the eye and brain. Eye and Brain, 3, 49-67; available at


Avci P, et al. (2013) Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. Semin Cutan Med Surg, 32(1):41-52, available at:

Cotler, H.B., Chow, R.T,. Hamblin, M.R., Carroll, J. (2015). The Use of Low Level Laser Therapy (LLLT) For Musculoskeletal Pain. MOJ Orthop Rheumatol, 2(15) available at:

Komaroff, A. (2017). Inflammation correlates with symptoms in chronic fatigue syndrome. PNAS, 114 (34) 8914-8916; available at:


Cotler, H.B., Chow, R.T., Hamblin, M.R. & Carroll, J. (2015). The Use of Low Level Laser Therapy (LLLT) for Musculoskeletal Pain. MOJ Orthop Rheumatol, 2(5), available at: doi:10.15406/mojor.2015.02.00068

Hsin, J. & Weston, J. (2015). Treating Sports-related Injury and Pain with Light Therapy. Practical Pain Management, 6(7); available at:

Huang, Z, Ma, J., Chen, J. et al. (2015). The effectiveness of low-level laser therapy for nonspecific chronic low back pain: a systematic review and meta-analysis. Arthritis Res Ther.,17, 360; available at:

Kingsley, J. Demchak, T. & Mathis, R. (2014). Low-level laser therapy as a treatment for chronic pain. Fronteirs in Physiology, 5: 306; Available at:

Okuni, I. et al. (2012). Low Level Laser Therapy (Red and near-infrared light) for Chronic Joint Pain of the Elbow, Wrist and Fingers, Laser Therapy, 21(1), 33–37; available at:


Avci P, et al. (2013) Low-level laser (light) therapy (LLLT) in skin: stimulating, healing, restoring. Semin Cutan Med Surg, 32(1):41-52, available at:

Hamblin, M.R. & Huang, Y. (2013). Handbook of Photomedicine. Taylor & Francis Lau et al. The effects of low level laser therapy on irradiated cells: a systematic review

Wunsch, A. (2014). A Controlled Trial to Determine the Efficacy of Red and Near-Infrared Light Treatment in Patient Satisfaction, Reduction of Fine Lines, Wrinkles, Skin Roughness, and Intradermal Collagen Density Increase. Photomedicine in Lasers and Surgery, 32(2): 93–100; available at:


Al-Dahr, M.H.S., & Elsayed, E. (2011) Immediate Vascular Photochemical Reactions to Infrared Laser Irradiation in Normal Volunteers. Journal of American Science, 7(6), 203-208; available at:

Eells, J.T.,  Wong-Riley, M.T.T., VerHoeve, J. Henry, M.  et al. (2004) Mitochondrial signal transduction in accelerated wound and retinal healing by near-infrared light therapy. Mitochondrion, 4, 559-567 available at:

Fabiana do Socorro da Silva Dias Andrade et al. (2014) Effects of low-level laser therapy on wound healing, Rev. Col. Bras. Cir. vol.41(2); available at:

Lins, R., Dantas, E.M.,Catão, M.H., Granville-Garcia, A.F., Neto, L.G. (2010). Biostimulation effects of low-power laser in the repair process. Anais Brasileiros de Dermatologia, 85(6), 849-855; available at:

Ramos, R.M., Burland, M., Silva, J.B. et al. (2018). Photobiomodulation Improved the First Stages of Wound Healing Process After Abdominoplasty: An Experimental, Double-Blinded, Non-randomized Clinical Trial. Aesthetic Plastic Surgery; available at:

Whelan, H.T., Smits Jr, R.L. , Buchman, E.V.  et al. (2001) Effect of NASA Light-Emitting Diode Irradiation on Wound Healing. Journal of Clinical Laser Medicine & Surgery, 19(6), 305-314 available at:

  • No products in the cart.